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Abstract— We analyze the convergence properties of
Asynchronous Stochastic Gradient Descent (A-SGD) by
explicitly incorporating the delay into the corresponding
stochastic differential equation. Unlike prior approaches
that rely on delay-compensation techniques or approxi-
mate stochastic differential delay equations, we propose
a framework where delays are directly embedded into the
optimization process. We establish exponential conver-
gence guarantees under the Polyak–Łojasiewicz (PL) con-
dition and derive a novel bound on steady-state behavior,
demonstrating that A-SGD remains stable under realistic
delay conditions. We validate our framework through exper-
iments on synthetic functions satisfying the PL condition,
showing improved convergence rates compared to existing
methods. We further confirm the theoretical upper bound
on an example of an over-parameterized neural network.

I. INTRODUCTION

Many modern machine learning tasks involve extremely
large datasets and models, which are too big or too time-
consuming for a single computer to handle efficiently. A
common solution is to split the work across multiple com-
putational units, often called workers. Each worker receives
some subset of the data or a portion of the computational
task. By collaborating, the workers aim to find a parameter
set that minimizes an objective function f . Formally, consider
the problem of minimizing a function f , where θ ∈ Rk are
the parameters:

f(θ) = Ex∼D[f(θ;x)].

Since the expectation is generally intractable (e.g., due to large
or infinite dataset D), we approximate it using a mini-batch
of samples {xi}Bi=1. The standard Stochastic Gradient Descent
(SGD) update is:

θt+1 = θt − ηt · ∇θ

(
1

B

B∑
i=1

f(θt;xi)

)
.

In synchronous SGD, we parallelize the computation using N
workers. Each worker performs the following steps at iteration
t: it receives the current parameters θt, which we call θ

(j)
t .
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Next, worker j samples a mini-batch Bj and computes the
local gradient:

g
(j)
t = ∇θ

 1

|Bj |
∑
x∈Bj

f(θ
(j)
t ;x)

 .

Once all workers have computed their local gradients, they
synchronize and compute the average gradient:

ḡt =
1

N

N∑
j=1

g
(j)
t

The final step involves updating the model parameters θ:

θt+1 = θt − ηt · ḡt

Note that in a synchronous training setup, each worker j
computes the gradient of f with respect to its parameter vector
θ
(j)
t ∈ Rk, evaluates it on its local data, and then waits until all

other workers have finished before aggregating their updates to
form the new global parameter θt. Only after this joint update
is completed does the next round of gradient computation
begin. This synchronization mechanism guarantees that the
local parameter θ(j)t of each worker coincides with the global
parameter θt at time t. However, such rigid synchronization
can be inefficient: if a single worker is delayed—due to
slower hardware or network congestion—all other workers
must remain idle until it completes.

Global 

Model

Worker

Worker

Fig. 1: A-SGD training process as discussed in [1]†.

†Before a worker wants to add the gradient gt(based on the model at time
t), to the global model, several other workers may already have added their
gradients and the global model has been updated to θt+τ , where τ is the
delay.
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To mitigate this bottleneck, one can use A-SGD. In A-SGD,
each worker computes its local gradient as soon as it finishes
its current batch and sends the update to a central server (or
parameter store) without waiting for others. This lets faster
workers continue contributing updates immediately. However,
it also means some workers may compute gradients using stale
versions of the model. For example, a worker might base its
gradient on the parameter θt at time t, but by the time the
update is applied, the global model may already have advanced
to θt+τ for some delay τ .

Formally, let gt be the gradient a worker computes using
the model snapshot at time t. (See Figure 1) Because of
asynchrony, the global model may have moved to θt+τ before
gt is finally applied. This delayed gradient phenomenon makes
the analysis of A-SGD more challenging than the synchronous
case, because updates are no longer calculated from the current
global model. The main goal of this work is to incorporate
these inevitable delays into a modified framework—using an
SDE–so that we can rigorously analyze and compensate for
their impact: Under reasonable delay assumptions, and with
suitable learning rate, we prove convergence of A-SGD in
expectation to a neighborhood of optima up to the persistent
constant which scales quadratically with the delay.

II. PREVIOUS WORK

The continuous-time perspective of SGD [2], has inspired
subsequent studies of delay effects and compensation in
asynchronous optimization. For instance, [1] proposed an A-
SGD algorithm with delay compensation, showing that careful
adjustments can mitigate adverse effects of stale gradients.
In a related direction, [3] examined noise-to-state stability
in stochastic differential equations with persistent noise. The
lock-free SGD framework Hogwild!, introduced in [4], pio-
neered subsequent research on asynchronous methods. An in-
depth survey on delay and asynchrony in large-scale machine
learning can be found in [5]. Additionally, real-world issues
related to delayed updates in distributed deep networks are
outlined in [6].

Our work is related to the convergence properties of A-SGD
under delays. In [7], the error-runtime trade-off is examined
and K-async algorithm and its variant K-batch-async are
proposed , achieving balanced staleness and iteration speed.
By relaxing the standard bounded-delay assumptions, recent
work has identified conditions under which asynchronous
methods can surpass synchronous counterparts in wall-clock
efficiency. In a similar direction, [8] revisits the convergence
of A-SGD with staleness, proving that for both convex and
nonconvex objectives, convergence rates can be made indepen-
dent of the maximum delay, depending only on the number
of parallel workers. The analysis introduces a virtual iterate
framework and employs delay-adaptive step sizes, showing
that A-SGD can often outperform equivalent synchronous
minibatch SGD in wall-clock time. Finally, in [9] Ringmaster
ASGD is proposed which is a fully asynchronous scheme
that filters out overly stale gradients via a delay threshold
R and applies updates immediately on “fresh-enough” gra-
dients, effectively prioritizing fast workers while disregarding

outdated information. The authors prove it is the first A-SGD
with optimal time complexity under arbitrary heterogeneous
worker speeds–matching known lower bounds–thereby giving
wall-clock optimality guarantees rather than iteration-only
rates. This establishes a modern theoretical foundation that
complements results under the Polyak–Łojasiewicz condition
by removing overly pessimistic delay constraints.

In discrete time, [10] studied distributed and Federated
learning to show improved convergence of O(σ2ϵ−2 +√
τmaxτavgϵ

−1), where σ2 is the noise variance, τmax, τavg
are the maximum and average delay, respectively, and ϵ is
the suboptimality gap. Refining the bounds in [11], [12]
establishes an improved rate of O(Lτavg/ϵ + σ2ϵ−2) for L-
smooth convex functions and further derives sharper iteration
complexity bounds for proximal incremental aggregated gradi-
ent methods. Meanwhile, [13] established a rate of O(1/

√
K)

under bounded delay (where K is the number of iterations),
and [14] extended this result to unbounded delays.

Another direction is the fixed-time gradient dynamics frame-
work for continuous-time optimization [15], where time-
varying coefficients enable convergence within a predeter-
mined horizon, independent of initial conditions. These ideas
motivate the incorporation of delay-awareness into stochastic
optimization. Likewise, [16] explored block-coordinate de-
scent under the Polyak-Łojasiewicz condition in discrete time.

A separate line of work [17] used SDDEs to approximate
A-SGD, mainly bounding discretization errors and deriving
rates via moment and energy analyses. Our approach departs
from such approximations by embedding delay directly into
the SDE, removing the need for auxiliary compensation tech-
niques. Under the Polyak–Łojasiewicz condition, we prove
exponential convergence and clarify the role of noise and
learning rate. Unlike [17], which links noise to batch sizes and
delays, our framework highlights their direct proportionality
to the learning rate, yielding clearer insight into optimization
stability.

On a completely different note, [18] addresses generaliza-
tion in asynchronous training. Specifically, the authors prove
non-vacuous generalization bounds for A-SGD under much
weaker conditions than Lipschitz continuity. They establish
on-average model stability results for A-SGD and quantify
how factors such as delay, initialization, and sample size affect
the excess generalization error. In [19], the authors explore
fully asynchronous Local-SGD in large-scale language model
training. The authors show that naive asynchronous training
can suffer slower convergence due to stale gradients with
momentum. They propose a delayed Nesterov momentum
correction and adaptive local step schedules to counteract
staleness.

III. OUR CONTRIBUTIONS

In this work, a continuous-time stochastic framework is
developed to model A-SGD with delayed updates. By embed-
ding gradient delays directly into the SDE–instead of relying
on classical SDDEs or discrete compensation techniques–
the approach naturally captures the role of delays and the
accumulation of noise. Under the Polyak-Łojasiewicz (PL)
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condition, this formulation yields an exponential convergence
bound that quantifies how delays, learning rates, and stochastic
noise jointly affect convergence to a steady-state neighbor-
hood of the optimum. The analysis further reveals a direct
linear dependence between the steady-state noise level and
the learning rate, underscoring the practical trade-off between
faster early-stage convergence and a larger long-term error
floor. In contrast to prior treatments that impose rigid assump-
tions on bounded delays or gradient variances, the proposed
continuous-time framework accommodates a broader range of
delay processes and offers stronger stability guarantees. Lastly,
it aligns well to the principles of input-to-state stability (ISS)
and noise-to-state stability (NSS) in stochastic control systems,
demonstrating that A-SGD converges to a noise-dependent
neighborhood of the optimal parameter at an exponential rate
despite the presence of delays. We verify our findings, in
particular, on an example scenario of an over-parameterized
neural network2

Auxiliary Implications: Over-parameterized neural net-
works often satisfy a PL-like condition [20], leading to
more rapid convergence [21], and sometimes global conver-
gence [22], [23]. Our framework remains valid when delays
vanish, reproducing standard SGD analysis. This connects
the known benefits of over-parameterization with A-SGD
by linking delay effects to faster convergence under PL-like
assumptions. In [24], the study of over-parameterized regimes
is extended to multi-layer neural networks, showing that for
sufficiently wide architectures, stochastic gradient descent can
reach global minima of deep training objectives in polynomial
time. The authors demonstrate that wide networks exhibit
dynamics closely approximated by neural tangent kernels,
leading to linear convergence of SGD under mild assumptions.
This result complements the Polyak–Łojasiewicz framework
by establishing that large network width can inherently induce
PL-like optimization landscapes, even for highly non-linear
deep models.

IV. MATHEMATICAL FORMULATION

In this work, we analyze the parameter update for each
individual worker as a continuous-time SDE of the form:

dθ(t) = −η(t)∇f(θ(t− τ(t)))dt+ η(t)σ(θ(t− τ(t)))dW (t),
(1)

where f : Rk 7→ R is a real-valued differentiable function, η(·)
is a learning rate to be specified later, θ(t) ∈ Rk, σ2(θ(t)) is
the noise variance, 0 ≤ τ(t) ≤ T < ∞ is the delay and
W ∈ Rk is a k-dimensional Brownian Motion. Let us first
explain the meaning of the learning rate which we have used
in the above equation.

Remark IV.1. (Learning rate): Suppose we have the stochas-
tic differential equation:

dx = η (f(x) dt+ g(x) dW (t)) ,

where η is a learning rate taken to be a constant, and W (t) is
standard Brownian motion. We define a new time variable t′

2Our codes can be found in https://github.com/arijitcodespace/Asynchronous-
SGD.

such that
t′ = ηt ⇒ dt =

dt′

η
,

and a new Brownian motion W̃ (t′) by

W̃ (t′) =
√
ηW (t),

so that

dW (t) =
dW̃ (t′)
√
η

,

thanks to the scaling property of the Brownian motion. Sub-
stituting into the original equation:

dx = η

(
f(x)

dt′

η
+ g(x)

dW̃ (t′)
√
η

)
= f(x) dt′ +

√
η g(x) dW̃ (t′).

The original SDE

dx = η (f(x) dt+ g(x) dW (t))

can be rewritten, after a change of time and Brownian motion,
as

dx = f(x) dt′ +
√
η g(x) dW̃ (t′),

which clarifies the claim. •

Throughout, for simplicity, we assume that σ(θ(t)) ≡ σ is
a constant scalar; this can easily be generalized3. We therefore
have that

dθ(t) = −η(t)∇f(θ(t− τ(t)))dt+ η(t)σdW (t). (2)

The main objective of this work is to analyze the convergence
properties of (2).

V. CONVERGENCE FOR POLYAK-ŁOJASIEWICZ
FUNCTIONS

We define a random variable along (2), which we term burn-
in time, as:

τM := inf {t ≥ 0 : f(θ(t))− f(θ∗) ≤M}. (3)

Also, we define the exit time:

τ↑R := inf {t ≥ 0 : f(θ(t))− f(θ∗) > R}, (4)

where R > 0. Consider a function f ∈ C2. We now state some
of the assumptions that we use throughout.

Assumption 1. (Polyak-Łojasiewicz condition): There exists
µ > 0 such that for all θ ∈ Rk,

1

2
∥∇f(θ)∥2 ≥ µ (f(θ)− f(θ∗)) . (5)

Assumption 2. (Lipschitz gradients): The gradient ∇f is L-
Lipschitz continuous:

∥∇f(θ1)−∇f(θ2)∥ ≤ L∥θ1 − θ2∥, ∀θ1, θ2 ∈ Rk. (6)

Assumption 3. (Bounded delay): The delay τ satisfies τ(t) ≤
T <∞ for all t ≥ 0.

3for example, with σ ∈ Rk , we replace σ2 by tr (σσ⊤).

https://github.com/arijitcodespace/Asynchronous-SGD
https://github.com/arijitcodespace/Asynchronous-SGD
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Note that Assumption 3 is realistic, and although not
uniformly assumed, for instance in [14], it has been widely
used in the literature, e.g., [13]).

Assumption 4. (Local gradient bound): There exist
M,GM ∈ R such that f(θ)−f(θ∗) ≤M ⇒ ∥∇f(θ)∥ ≤ GM ,
where,

GM = sup
θ:f(θ)−f(θ∗)≤M

∥∇f(θ)∥ <∞.

The finiteness of GM is justified in the following assumption.
This implication holds deterministically for all θ ∈ Rk.

Assumption 5. (Bounded sublevel sets): For all R < ∞,
ΩR := {θ : f(θ) − f(θ∗) ≤ R} is bounded. Thus, following
from Assumption 2, we have that

GR := sup
θ∈ΩR

∥∇f(θ)∥ <∞.

Assumption 6. (Learning rate): We assume that the
learning-rate η : [0, tf ] 7→ R>0 satisfies the following proper-
ties: Given a delay bound T > 0, a final time 0 < tf < ∞,
and any (K + 1) partition (K ≥ 1)

0 = t−1 ≤ t0 < t1 < · · · < tK = tf ,

which satisfies tj+1 − tj ≥ T for j ∈ {0, . . . ,K − 1}, then,
1) (Continuity): η is continuous on [0, tf ];
2) (Delayed monotonicity): η is non-increasing on the inter-

val [t0, tf ].

Note that we do not require any monotonicity property on
the interval [0, t0). The main result of this work is as follows:

Theorem 1. (Convergence of A-SGD under PL condition):
Under Assumptions 1 – 5, and assuming that η(t) = η, where
η ∈ R>0, the trajectories of (2) satisfy:

E[f(θ(t))− f(θ∗)] ≤ (E [f(θ(τM ))]− f(θ∗)) e−ηµ(t−τM )

+ κ
(
1− e−ηµ(t−τM )

)
, (7)

where

κ =
η2

µ

(
L2T 2 (G2M )

2
+ L2σ2T

)
+

ησ2kL

2µ

is called the noise-margin.

In practice, e.g., in neural networks, one often employs a
time-varying learning rate. In what follows, we provide an
upper bound for A-SGD in such settings.

Theorem 2. (Convergence with time-varying η): Let tf > 0
and suppose that Assumptions 1 – 5 hold, and the learning
rate η satisfies Assumption 6 with the specific

t0 := τM ,

where τM is as in (3). For K ≥ 1, consider the (K +
1)-partition of [0, tf ] as presented by Assumption 6. The
parameter trajectory governed by the SDE (2) satisfies the
convergence bound:

E[f(θ(t))− f(θ∗)] ≤ E[f(θ(t0))− f(θ∗)]e
−µ

∫ t
t0

η(s)ds

+ κ(K) (8)

for t ≥ t0 where,

κ(K) :=

K−1∑
j=0

e−µηmax, j t0

µηmax, j

(
e
µ

[
ηmax, j−ηmin,j

]
tj+1

eµηmin,jtj

− e
µ

[
ηmax, j+ηmin,j

]
tj
e−µηmin,jtj+1

)
(
L2

2

[
2η3max,jT

2 (G2M )
2
+ 2η3max,jσ

2T
]

+
σ2

2

∣∣∣∣ max
1≤s≤tf

tr
[
∇2f(θ(s))

]∣∣∣∣ η2max,j

)
,

where ηmin,j and ηmax, j are, respectively, the minimum and
maximum of η on the interval [tj , tj+1], for all j ∈
{0, . . . ,K − 1}.

It is worth pointing out that by taking K = 1 and learning
rate to be a constant η(t) = η, and further upper bounding∣∣∣∣ max

1≤s≤tf
tr(∇2(f(θ(s)))

∣∣∣∣ ≤ kL,

then we recover Theorem 1 from Theorem 2. The result has
several other implications, which we discuss below.

Remark V.1. (Exponential descent under PL): Once the
learning rate decays to a small value, the dominant term in
both (7) and (8) is

(f(θ(t0))− f(θ⋆)) exp
(
−µ
∫ t

t0

η(s) ds
)
.

Therefore, for objective functions which satisfy the PL condi-
tion, the trajectories of A-SGD contract (with high probability)
at the same exponential rate as the ones for synchronous
SGD. The impact of the delay is shortening the admissible
upper bound on η and as such, it does not affect the rate of
contraction. •

Remark V.2. (Noise margin versus step-size tail): For
constant or block-wise constant schedules, the accumulated
variance of the Brownian term,

∫∞
t0

η2(s) ds, diverges. The
residual integral in the proof (See Appendix IV) therefore
stabilizes at a strictly positive value, yielding the fixed “noise-
margin” κ in Theorem 2. •

Remark V.3. (Practical speed-accuracy trade-off): We ob-
serve from Theorem 2 that the learning rate only needs to
decrease after some time t0. As shown in the proof (Ap-
pendix IV), the interval [0, t0] corresponds to a burn-in phase
during which the value gap f(θ(t)) − f(θ∗) decays rapidly.
In practice, one can set a relatively large learning rate in this
phase so that the gap closes quickly (in fewer iterations) before
the decay schedule takes effect. This drives the error rapidly
into a ball of radius O(ησ2) (see the dominant term in κ for
η(t) < 1). The subsequent decay of the learning rate then
gradually shrinks the radius of this ball, albeit at the cost of
slower convergence in the late stage. •
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Remark V.4. (Delay robustness): The coefficients of the delay
terms (containing T ) in the expression of κ reads:

L2

2

[
2η2max,jT

2 (G2M )
2
+ 2η2max,jσ

2T
]
.

Once the learning rate begins to decay, the above term
contributes less to the overall value of κ. Consequently,
moderate asynchronous staleness affects only the constants in
the analysis, without altering the qualitative behavior described
above. •

VI. EXPERIMENTS AND RESULTS

In this section, we present two kinds of experiments,
one with a synthetic objective function and one with over-
parameterized neural networks. We start our experiments from
the simpler case of the synthetic objective function. We denote
using θ(t), the t-th iterate of θ. For brevity, we omit the
algorithms for A-SGD simulation, Hessian Trace, and L-
smoothness estimation for neural networks, which are fairly
standard algorithms used in the literature and can be found in
our repository listed before.

VI-A Synthetic Objective Function
We choose the objective function:

f(θ) = θ⊤Qθ + ϵ sin(w⊤θ),

for Q ≻ 0, ϵ ≥ 0 and w ̸= 0. This function satisfies the
Polyak-Łojasiewicz condition for moderate values of ϵ and is
additionally strongly convex for small values of ϵ. It can be
verified that when f is strongly convex, the strong convexity
constant µ (which is also the PL-constant) is given by (See
Appendix V for a proof),

µ = 2λmin(Q)− ϵ∥w∥2.

Additionally, the L-smoothness constant is also known and is
given by,

L = 2λmax(Q) + ϵ∥w∥2,

where λmin(Q) and λmax(Q) are the smallest and largest eigen-
values of Q, respectively.

Setting: Throughout this section, we focus solely on a
strongly convex objective and compare our bound to others
relevant in the literature. We verify the upper bound proposed
by Theorem 2 for a time-varying learning rate schedule. The
results are plotted in Figure 2 and Figure 3. For [17, Theorem
4.2], to obtain an upper bound of f(θ(t))− f(θ∗), we simply
multiply their upper bound by a factor of L/2.

For simplicity of simulation, in the case of synthetic func-
tions, we further upper bound κ, given in Theorem 2 by upper
bounding ∣∣∣∣max

θ∈Rk
tr(∇2f(θ))

∣∣∣∣ ≤ kL.

We do this to avoid calculating the maximum trace of the
Hessian throughout the simulation.

Results: We perform two experiments, the parameters of
which are given in Table I and Table II respectively. The
results are shown in Figure 2 and Figure 3. It should be noted

that the trajectories shown in the figures are the empirical
mean trajectory across a number parallel simulations. For the
second experiment, we chose a time-varying noise variance
σ2(t) instead of a fixed variance, and to plot the upper bound,
we used the mean variance across iterations. The trajectory and
the corresponding upper bound obtained, therefore, improves
substantially the ones obtained in [17, Theorem 4.2]. For the
learning rate schedules, see Figure 2 (Right) and Figure 3
(Right), we keep the learning rate fixed during the initial phase
and start the decay only when the difference between optimum
and current objective value has fallen below the threshold
given in Table I and Table II.

Remark VI.1. (Variance schedule in Experiment 2): For
Experiment 2, we chose a variance schedule instead of a fixed
variance, i.e., the variance is time-varying:

σ2(t) ≡ tr(σ(t)σ(t)⊤) = 10−6
(
e−5×10−3i + 10−10

)
,

where i denotes the index of iteration; i ∈ {1, 2, . . . }. But
while calculating the upper bound, we used the empirical mean
of the schedule defined above:

σ̄2 =
10−6

tf

tf−1∑
i=0

e−5×10−3i + 10−10

 .

•

VI-B “Over-parameterized” Neural Networks
In this section, we validate our upper bound given by

Theorem 2 on over-parameterized neural networks. Roughly
speaking, a neural network is called “over-parameterized” if
the number of parameters is larger than the number of data
points. From [20], we know that this class of neural networks
tends to satisfy the PL condition on the loss landscape.

Setting: We chose the CIFAR-100 [25] dataset for our
experiments. This contains 50, 000 RGB images, each of size
32 × 32 × 3. We choose our neural network to be VGG-
16 [26]. To estimate the gradient variance, we use the gradient
of a 4096-batch as a reference when obtaining the estimated
gradient with batch size samples. During the burn-in time,
we opt for a learning rate schedule with a warm-up that turned
out to be empirically sound. The PL-constant µ is estimated
by using:

µ = min
θ

∥∇f(θ)∥2

2f(θ)
,

since f(θ∗) = 0. In other words, the largest slope of the
line above which lie all the points in scatter-plot of f(θ)
vs ∥∇f(θ)∥2. It must be noted that we train a auxiliary
network (with the same architecture as in the experiments)
while estimating the PL-constant.

To estimate the minimum L-smoothness constant, which
is defined as the largest eigenvalue of the Hessian for twice
differentiable functions, we use the power iteration method
to determine the largest eigenvalue of the Hessian at each
iteration during a proxy training and then take the minimum
over all the largest eigenvalues. We also estimate the trace of
the Hessian, using Hutchinson’s method [27]. It must be noted
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Fig. 2: Experiment 1: Trajectories for A-SGD and corresponding upper bounds for Theorem 2 and [17, Theorem 4.2] (Left);
learning rate schedules in log-scale (Middle); learning rate for Theorem 2 (linear scale) (Right).
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Fig. 3: Experiment 2: Trajectories for A-SGD and corresponding upper bounds for Theorem 2 and [17, Theorem 4.2] (Left)
learning rate schedules, Upper and lower bounds (Middle); learning rate for Theorem 2 (linear scale) (Right).

Parameter Theorem 2 [17, Theorem 4.2]
Number of parallel A-SGDs 100 100
Initial norm ∥θ0∥ 0.5 0.5
Dimension 50 50
λmax(Q) 5.0 5.0
λmin(Q) 1.0 1.0
ϵ 10−4 10−4

iterations (tf ) 500 500
Maximum Delay (iterations) 20 20
σ2 or tr(σσ⊤) 10−8 10−8

fraction of initial value gap
after which learning rate decay starts 0.05 –

TABLE I: Comparison of Parameters in Theorem 2 and [17, Theorem 4.2], Experiment 1.

that the L-smoothness constant, the PL-constant µ, does not
depend on the kind of optimizer used. It only depends on the
loss landscape, and hence, to get near the optimum, we used
the Adam optimizer with momentum and estimated these pa-
rameters. However, the term max1≤s≤tf tr(∇2f(θ(s))) does
depend on the trajectory the optimizer takes and, consequently,
is also dependent on the choice of the optimizer itself. To

empirically estimate the trace and to reduce computation
overhead by doing two A-SGDs (one to estimate the trace
and one for simulation), we do the trace calculation along with
the calculation of µ and L. We note that this is an empirical
estimate, and to be taken with that in mind.

Finally, to simulate A-SGD, we use momentum during
training. This is because large networks like VGG-16 are
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Parameter Theorem 2 [17, Theorem 4.2]
Number of parallel A-SGDs 200 200
Initial norm ∥θ0∥ 2.0 2.0
Dimension 100 100
λmax(Q) 10.0 10.0
λmin(Q) 1.0 1.0
ϵ 10−2 10−2

iterations (tf ) 3000 3000
Maximum Delay (iterations) 50 50
σ2 or tr(σσ⊤) See Remark VI.1 See Remark VI.1
fraction of initial value gap
after which learning rate decay starts 5× 10−4 –

TABLE II: Comparison of Parameters in Theorem 2 and [17, Theorem 4.2], Experiment 2.

Parameter Theorem 2

Dimension (k) 138M

Maximum Delay (it-
erations)

10

σ2 or tr(σσ⊤) 10−8

iterations (tf ) 25000

learning rate schedule
during burn-in

{
2× 10−8t+ 10−4, t ≤ 10000

3× 10−4 exp
(
−4× 10−5(t− 10000)

)
, t > 10000

t → index of iteration; t ∈ {1, 2, . . . }
max tr(∇2f(θ)) 26250

µ 0.1273

L 33

f∗ 0

fraction of initial
value gap after which
burn-in stops

0.3

G2M 4.14

batch size 1024

Apply Momentum True

TABLE III: Parameter Settings for Experiment 3.

known to settle/oscillate at poor local minima while trained
without momentum-based optimizers [28], [29] This is not
in contradiction to our theory because momentum-based op-
timization leads to better minima and thus the upper bound
given by Theorem 2 still holds with some slack. Now, to
simulate Theorem 2 we partition the time interval [0, tf ] into
a K-partition t0, t1, . . . , tK−1 such that tj+1 − tj > T . We
perform two experiments on this network, the parameters of
which are provided in Table III.

Results: Figure 4 shows the upper bound and loss trajectory
under the settings of Table III. The upper bound is valid after
the process has reached a preset threshold (given in Table III),
i.e., after the process has entered the set ΩM for a chosen M .
Since our bound is derived for vanilla A-SGD, intuitively and
practically, it makes sense that we observed the bound obeys
momentum-based A-SGDs; this is because the loss trajectories
for momentum-based techniques tend to remain lower than
those without momentum (at least for convex objectives).

Remark VI.2. (Adaptive local bounds and a lower-envelope
certificate): Our analysis is local: it certifies the trajectory
once it enters a chosen sublevel set ΩM . This allows practition-
ers tailor M or GM , to the phase of training, compute a small
family of inexpensive certificates, and then take their point-
wise lower envelope to produce a tight, global-in-time esti-

0 5000 10000 15000 20000 25000
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Upper Bound on A-SGD Trajectory

Fig. 4: Experiment 3: Upper bound (Black), loss trajectory of
A-SGD (Blue), and loss trajectory of SGD (Orange) of the
neural network.

mate. In contrast, fully non-local bounds (e.g., [17, Theorem
4.2]) are necessarily more conservative and may not capture
the late-stage decay seen in practice. Operationally, one can
pre-compute bounds at K checkpoints–from initialization up
to the initial gradient norm–and use the lower envelope as a
robust worst-case curve. See Figure 5. •

VII. CONCLUSION AND FUTURE SCOPE

In this work, we derived an approach to analyze the perfor-
mance of A-SGD on the class of Polyak–Łojasiewicz functions
and demonstrated its performance without the explicit need
for delay compensation. Using an appropriate choice of the
learning rate schedule, we provided an upper bound for the
underlying A-SGD process that is tighter than the previously
known upper bound when restricted to the class of strongly
convex functions. We demonstrated the effectiveness of the
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0 5000 10000 15000 20000 25000
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Fig. 5: Minimum/combined upper bound (dashed) of the five
calculated upper bounds (solid).

bound in a deep neural network experiment in an over-
parameterized regime, which tends to satisfy a variant of the
PL-condition. Furthermore, we showed in an experiment that
our bound can be applied to momentum-based optimization
settings. Further refinements and tightening of the proposed
bound require knowledge of the structure imposed on the
loss landscape for deep neural networks. To this end, we
close the discussion with a broad future scope to expand the
development to other, wider classes of functions—for example,
the Kurdyka–Łojasiewicz class of functions.
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APPENDIX I
BOUNDED BURN-IN TIME

We first state some lemmas that will be useful in proving
Theorem 1 and Theorem 2.
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Lemma 1. (Bounded burn-in time): Under Assumptions 1–3
and Assumption 5, there exists a deterministic constant M⋆

such that for every M ≥M⋆ and a constant learning rate η,

E[τM ] ≤ Tburn <∞.

We analyze burn-in by working inside a safe sublevel set.
First, an exponential supermartingale shows that leaving this
set within any fixed window is unlikely. Second, while we
remain inside, the PL condition gives a uniform negative drift
of the objective, and the delay contributes only a bounded
penalty; thus, over a short, fixed block of time, there is a
constant, strictly positive chance of dropping below level M .
Finally, we tile time into such blocks and restart the argument
at block boundaries (invoking strong Markovianity). Each
block is an attempt with the same success probability, so the
number of attempts has a geometric tail, and the expected
burn-in time is finite.
Now we begin the proof.

Proof. Let,
gt := ∇f(θ(t)),

and,
tR := t ∧ τ↑R.

Also, let R be such that R > f(θ(0))− f(θ∗).
Delay-Window Bounds: For any t ≥ 0, we have∥∥∥∥∥

∫ t

t−τ(t)

gs−τ(s)ds

∥∥∥∥∥
2

≤ (τ(t))2 · sup
u∈[t−τ(t),t]

∥∥gu−τ(u)

∥∥2
≤ T 2G2

R (9)

where GR is as defined in Assumption 5.
Recent-Iterate Difference in Expectation: For any t ≥ 0,
we have using

∥x+ y∥2 ≤ 2∥x∥2 + 2∥y∥2,

for x, y ∈ Rk, and (2) that,

∥θ(tR)− θ(tR − τ(tR))∥2 ≤ 2η2

∥∥∥∥∥
∫ tR

tR−τ(tR)

gs−τ(s)ds

∥∥∥∥∥
2

+ 2η2σ2∥W (tR)−W (tR − τ(tR))∥2.

Using (9) and the fact:

E[∥W (t)−W (t−∆)∥2] = ∆,

we have:

E
[
∥θ(tR)− θ(tR − τ(tR))∥2

]
≤ 2η2T 2G2

R + 2η2σ2T

=: DR (10)

Exponential Supermartingale: For any λ ∈
(
0, (ησ2)−1

)
,

define

aλ :=
λη

2
(1− λησ2) (≥ 0),

Bt :=
λη

2
L2

∫ tR

0

∥θ(s)− θ(s− τ(s))∥2ds+ 1

2
λη2σ2kLtR.

(11)

We note that Bt ≥ 0. Define the stopped exponential process

Xλ(t) = exp

(
λ[f(θ(tR))−f(θ∗)]+aλ

∫ tR

0

∥gs∥2ds−Bt

)
.

(12)

Let,

Yt := λ[f(θ(tR))− f(θ∗)] + aλ

∫ tR

0

∥gs∥2ds−Bt,

so that Xλ(t) = eYt . Thus,

dYt = λdf(θ(tR)) + aλ∥gtR∥
2
dt− dBt.

Using Itô’s Lemma [30] to obtain df(θ(tR)), we get:

dYt =

[
− ληg⊤tRgtR−τ +

1

2
λη2σ2 tr(∇2f(θ(tR)))

+ aλ∥gtR∥
2

]
dt− dBt + λdM(tR)

where dM(t) represents the martingale term and

dM(tR) = ησg⊤tRdW (t). (13)

Now using,

x⊤y =
1

2

[
∥x∥2 + ∥y∥2 − ∥x− y∥2

]
, (14)

for x, y ∈ Rk, we simplify the above SDE as:

dYt =

[
−λη

2

(
∥gtR∥

2
+
∥∥gtR−τ(tR)

∥∥2−∥∥gtR − gtR−τ(tR)

∥∥2)
+
1

2
λη2σ2 tr(∇2f(θ(tR)))+aλ∥gtR∥

2

]
dt−dBt+λdM(tR).

(15)

Now, we write the quadratic variation as

d⟨Y ⟩t = λ2d⟨M⟩t = λ2η2σ2∥gtR∥
2
dt.

Now,

dXλ(tR) = Xλ(tR)

(
dYt +

1

2
d⟨Y ⟩t

)
. (16)

Using (13) and (15) in (16), we get

dXλ(tR) = Xλ(tR)

[(
− λη

2

(
∥gtR∥

2
+
∥∥gtR−τ(tR)

∥∥2
−
∥∥gtR − gtR−τ(tR)

∥∥2)+ 1

2
λη2σ2 tr(∇2f(θ(tR)))

+ aλ∥gtR∥
2 − Ḃt +

1

2
λ2η2σ2∥gtR∥

2

)
dt+ λdM(tR)

]
,

(17)

where,

Ḃt =
dB

dt

=
λη

2
L2∥θ(tR)− θ(tR − τ(tR))∥2 +

1

2
λη2σ2kL. (18)

Call the coefficient of dt in (17) as D(t). Then, by our choice
of aλ from (11), we have that

−λη

2
∥gtR∥

2
+ aλ∥gtR∥

2
+

1

2
λ2η2σ2∥gtR∥

2
= 0. (19)
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By Assumption 2, for any t ≥ 0,∥∥gt − gt−τ(t)

∥∥ ≤ L∥θ(t)− θ(t− τ(t))∥
tr(∇2f(θ(t))) ≤ kL.

(20)

Using (19), (20) in (17), we get

D(t) ≤ −λη

2

∥∥gtR−τ(tR)

∥∥2+λη

2
L2∥θ(tR)− θ(tR − τ(tR))∥2

+
1

2
λη2σ2kL− Ḃt.

Using (18), this simplifies to

D(t) ≤ −λη

2

∥∥gtR−τ(tR)

∥∥2 ≤ 0.

So,

E[Xλ(t)] ≤ E[X(0)] = exp (λ [f(θ(0))− f(θ∗)]) . (21)

We therefore have the decomposition

dXλ(t) = Xλ(t)λdM(t) +Xλ(t)D(t)︸︷︷︸
≤0

dt,

and
E[dXλ(t)|Ft] < 0 for λ ∈ (0, (ησ2)−1).

Thus for any λ ∈ (0, (ησ2)−1), the process Xλ(t) is a non-
negative supermartingale.
High Probability Localization: Define the stopped process

Xst
λ (t) := Xλ(tR).

Note that Xst
λ stays a non-negative supermartingale. On the

event {τ↑R ≤ t}, we have tR = τ↑R and f(θ(tR))−f(θ∗) ≥ R.
Since the integral in (12) is non-negative,

Xst
λ (t) ≥ exp(λR−Bt)1{τ↑

R≤t} (22)

Taking expectations and using (21),

exp (λ [f(θ(0))− f(θ∗)]) ≥ E[Xst
λ (t)]

≥ exp(λR)E
[
e−Bt1{τ↑

R≤t}

]
≥ exp(λR)P(τ↑R ≤ t),

since Bt ≥ 0. Hence, we get a time-uniform tail bound:

P(τ↑R ≤ t) ≤ exp [λ[f(θ(0))− f(θ∗)]− λR] , (23)

for all t ≥ 0 and λ ∈ (0, (ησ2)−1].
Finite Burn-In Time: Now we show E[τM ] <∞. Using Itô’s
Lemma and (14) as before, we obtain:

df(θ(t)) = −η

2
∥gt∥2dt−

η

2

∥∥gt−τ(t)

∥∥2dt
+

η

2

∥∥gt − gt−τ(t)

∥∥2dt
+

1

2
η2σ2 tr(∇2f(θ(t)))dt+ dM(t)

where dM(t) is as defined in (13). Using (20) and dropping
the non-positive term −η

2

∥∥gt−τ(t)

∥∥2dt we have,

df(θ(t)) ≤ −η

2
∥gt∥2dt+

η

2
L2∥θ(t)− θ(t− τ(t)))∥2dt

+
1

2
η2σ2kLdt+ dM(t).

Using V (t) = f(θ(t))− f(θ∗) and E[dM(t)] = 0, we have,

d

dt
E[V (t)] ≤ −η

2
E[∥gt∥2]+

η

2
L2E

[
∥θ(t)− θ(t− τ(t))∥2

]
+

1

2
η2σ2kL. (24)

By Assumption 1,

∥gt∥2 ≥ 2µV (t).

Thus,
−η

2
E[∥gt∥2] ≤ −ηµE[V (t)]. (25)

Now using (25) and (10) in (24), we have

d

dt
E[V (t)] ≤ −ηµE[V (t)] +

ηL2

2
DR +

1

2
η2σ2kL. (26)

Let,

CR :=
ηL2

2
DR +

1

2
η2σ2kL. (27)

Now define for α > 0,

Z(t) := eαtV (t ∧ τM ∧ τ↑R).

Thus,

d

dt
E[Z(t)] ≤ eαt

[
(α− ηµ)E[V (t)1{t<τM∧τ↑

R}]

+ CRP(t < τM ∧ τ↑R)

]
.

On {t < τM}, we have V (t) ≥M ; so by Markov’s inequality,

P(t < τM ∧ τ↑R) ≤
1

M
E[V (t)1{t<τM∧τ↑

R}].

Thus,

d

dt
E[Z(t)] ≤ eαt

(
α− ηµ+

CR

M

)
E[V (t)1{t<τM∧τ↑

R}].

Choose,
α = ηµ− 2CR

M
> 0, (28)

to make d
dtE[Z(t)] < 0. Thus, we conclude

E[Z(t)] < E[Z(0)] = V (0) ∀ t ≥ 0. (29)

Therefore, for any s ≥ 0,

P(τM ∧ τ↑R ≥ s) ≤ E[Z(s)]

Meαs

≤ V (0)

M
e−αs. (30)

Integrating from s = 0 to ∞ gives,

E[τM ∧ τ↑R] ≤
V (0)

αM
<∞. (31)

Now, for the supermartingale Xst
λ , we already have a time

uniform exit bound:

δR(s) := P(τ↑R < s) ≤ eλ(V (0)−R) ∈ (0, 1) (32)

for all λ ∈ (0, (ησ2)−1). Fix such a λ and

R > V (0) +
1

λ
log 2, (33)
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so that δR < 1/2. Next, define a window length

t⋆ :=
1

α
log

(
2V (0)

M

)
(34)

so that,

P(τM ∧ τ↑R > t⋆) ≤
1

2
. (35)

Let s > 0. Then,

{τM < s}c = {τM ≥ s} ⊆ {τM ∧τ↑R ≥ s}∪{τ↑R ≤ s}. (36)

Using union bound,

P(τM < s) ≥ 1− P(τM ∧ τ↑R ≥ s) + P(τ↑R ≤ s). (37)

Substituting using (31) and (32) we get

P(τM < s) ≥ 1− V (0)

M
e−αs − eλ[V (0)−R].

For s = t⋆, we get

pR := P(τM ≤ t⋆) ≥ 1− 1

2
− δR =

1

2
− δR > 0

by our choice of R from (33). Now we build an upper-bound
for E[τM ]. Let,

S0 = 0; Sn+1 = Sn + t⋆, n ≥ 0.

Define the Bernoulli indicators

Ξn := 1{τm≤Sn+1} − 1{τm≤Sn},

and,
N := min{n ≥ 0 : Ξn = 1}.

Then, τM ≤ SN+1 = (N + 1)t⋆. We claim:

P(τM ≤ Sn+1|FSn) ≥ pR on {V (Sn) ≤ R} ∩ {τM > Sn},

where n ∈ {1, 2, . . . , N}. Indeed, if we define

β(t) := {θ(t+ u)}u∈[−T,0],

then β(t) is strong Markov. So by the strong Markov property,
conditional on FSn

, the post-Sn evolution is the same SDE
started from β(Sn). Again using a similar union bound as
in (37), we get

P(τM ≤ Sn+1|FSn
) ≥ 1− P(τM ∧ τ↑R > Sn+1|FSn

)

− P(τ↑R ≤ Sn+1|FSn). (38)

Note that Sn+1−Sn = t⋆. By a similar localization argument
as before, we reach

P(τM ∧ τ↑R > Sn+1|FSn) ≤
V (Sn)

M
e−αt⋆

≤ R

M
e−αt⋆ . (39)

Using the supermartingale argument for escaping level sets,
we reach

P(τ↑R ≤ Sn + t⋆) ≤ exp (λ[V (Sn)−R]) (40)
= exp (−λ[R− V (Sn)]) (41)

= e−λ∆ (∆ = R− V (Sn) ≥ 0). (42)

Thus, the escape probability is strictly less than 1 whenever
V (Sn) < R. Using (39) and (40) in (38), we get

P(τM ≤ Sn+1|FSn
) ≥ 1− R

M
e−αt⋆ − e−λ(R−V (Sn))

≥ pR.

Now,

E[Ξn|FSn
] = P(Sn < τM ≤ Sn+1|FSn

)

= 1{τM>Sn}P(τM ≤ Sn+1|FSn
).

Thus, on {τM ≤ Sn}, the expectation is 0. So we are left with

P(Ξn = 1|FSn) ≥ pR, (43)

on the event {V (Sn) ≤ R} ∩ {τM > Sn} as claimed.
Now, call block n an attempt if {V (Sn) ≤ R} ∩ {τM >
Sn} holds. (43) says that attempt-by-attempt the conditional
success probability is ≥ pR. Define the index of the first
successful block as

N := inf{n ≥ 0 : τM ≤ Sn + t⋆}.

WLOG, assume that the blocks are started only when inside
the interior (i.e., V (Sn) < R on {τM > Sn} for every n).
Otherwise, we increase R (say, R ← 2R). Let qR = 1 − pR.
For n ≥ 0, set

An := {τM > Sn} ∩ {V (Sn) < R} ∈ FSn
.

By construction, An holds whenever block n begins. From
above, we know

E[Ξn|FSn
] ≥ pR1{An}.

Since {N > n} ⊆ An (if success has not occurred by the end
of block n, then we are alive at its start and in the interior),
we have

P(N > n+ 1) = E[1{N>n}P(Ξn = 0|FSn
)]

≤ E[1{N>n}(1− pR)]

= qRP(N > n).

So, by induction

P(N > m) ≤ qm+1
R , m ≥ 0.

Thus,

E[N ] =
∑
m≥0

P(N > m)

≤
∑
m≥0

qm+1
R

=
1− pR
pR

.

Finally, τM ≤ Sn + t⋆ ≤ (N + 1)t⋆ and

E[τM ] ≤ E[N + 1]t⋆

≤ t⋆
1− pR
pR

<
t⋆
pR

<∞.
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Consequently, from (28), we have

M⋆ =
2CR

ηµ
.

We note below that the result obtained in Lemma 1 holds,
with an idential proof, even when the parameter η depend on
time.

Corollary 1. (Bounded burn-in time for time-varying learn-
ing rate): If η ≡ η(t) then with α ≡ α(t) such that
α, η : [0,∞) 7→ R>0, we have,

E[τM ] <∞.

APPENDIX II
STAYING IN LOCAL SUBLEVEL SET

Lemma 2. (Staying in local sublevel set): Fix M > 0, and
a horizon H > 0, and a failure level δ ∈ (0, 1). Assume for
t0 > 0 that f(θ(t0))−f(θ∗) < M and that the delayed history
over the last T units of time is already inside a slightly larger
set Ω2M , i.e.,

θ(u) ∈ Ω2M ∀u ∈ [t0 − T, t0],

where,
Ω2M := {θ : f(θ)− f(θ∗) ≤ 2M}.

Then there exists η̄ > 0 such that for all η ∈ (0, η̄],

P

(
sup

t∈[t0,t0+H]

f(θ(t))− f(θ∗) > 2M

)
≤ δ

Proof. Partition [t0, t0 + H] into J := ⌈H/h⌉ sub-intervals
of length h ∈ (0,min{1, T}] with grid points tj = t0 + jh.
By (2), for any t ∈ [tj , tj+1],

θ(t)− θ(tj) = −η
∫ t

tj

∇f(θ(s− τ(s)))

+ ησ (W (t)−W (tj)) . (44)

On the event {θ(s − τ(s)) ∈ Ω2M ∀s ∈ [tj , tj+1]}, we have
∥∇f(θ(s− τ(s)))∥ ≤ G2M , hence

∥θ(t)− θ(tj)∥ ≤ η (hG2M + σSj) ,

where,
Sj := sup

u∈[0,h]

∥W (tj + u)−W (tj)∥.

Note that Assumptions 2 and 5 guarantee G2M <∞.
By descent lemma for L-smooth functions,

|f(θ(t))− f(θ(tj))| ≤ ∥∇f(θ(tj))∥∥θ(t)− θ(tj)∥

+
L

2
∥θ(t)− θ(tj)∥2

≤ aηRj +
L

2
η2R2

j , (45)

where,
a := G2M , Rj := hG2M + σSj .

Now, define

m(η, S) := aη(hG2M + σS) +
L

2
η2 (hG2M + σS)

2
.

With V (t) := f(θ(t))− f(θ∗), we have from (45) that,

sup
t∈[tj ,tj+1]

V (t) ≤ V (tj) +m(η, Sj). (46)

By Gaussian concentration, ∃c1, c2 > 0 such that,

P
(
Sj ≥ α

√
h
)
≤ c1e

−c2α
2

, ∀α > 0.

Choose,

α :=

√
1

c2
log

(
2c1J

δ

)
.

Then a union bound over j = 0, . . . , J−1, leads to Sj ≤ α
√
h

for all j with probability at least 1− δ/2. On this event (i.e.,
the event {Sj ≤ α

√
h}), we have

m(η, Sj) ≤ m⋆(η) (47)

:= aη
(
hG2M + σα

√
h
)
+

L

2
η2
(
hG2M + σα

√
h
)2

.

(48)

Now, we use induction over sub-intervals to show that the
entire trajectory from t0 to t0 + H lies within Ω2M with
probability at least 1− δ/2.
We have V (t0) ≤M . Because h ≤ T and the initial delayed
history on [t0 − T, t0] lies in Ω2M , Assumption 3, implies
θ(s− τ(s)) ∈ Ω2M for all s ∈ [tj , tj+1]. Choose,

η ≤ η̄

:= min

 M

2Ja
(
hG2M + σα

√
h
) ,√√√√ M

JL
(
hG2M + σα

√
h
)2
 ,

so that,
Jm⋆(η) ≤M.

Let,
Vj = sup

t∈[t0,tj ]

V (t), j ∈ {0, . . . , J}.

On the event where all Sj are bounded, (46) and (47) gives

sup
t∈[tj ,tj+1]

V (t) ≤ V (tj) +m⋆(η) ≤ Vj +m⋆(η). (49)

Therefore,

Vj+1 = sup

{
Vj , sup

t∈[tj ,tj+1]

V (t)

}
≤ Vj +m⋆(η)

Inducting from V0 = V (t0) ≤M yields,

Vj ≤M + jm⋆(η) for all j.

Taking j = J , we get

sup
t∈[t0,t0+H]

V (t) = VJ ≤M + Jm⋆(η) ≤ 2M

with probability at least 1 − δ/2. On the complementary
event (i.e., {Sj > α

√
h}) we pay probability at most δ/2.

Combining both leads to the desired bound.
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APPENDIX III
PROOF OF THEOREM 1

Now, in proving the theorem, we split the SDE solution
into two phases: the burn-in phase and the local phase.
Intuitively, after initializing θ, say at θ(0), the burn-in phase
corresponds to the regime where the SDE drives θ rapidly
towards the optimum; in this phase the gradients are relatively
large. Once the process enters the local phase, the parameter
vector stabilizes near the optimum, so the gradients become
correspondingly small. This decomposition allows us to bound
the deviation of θ from the optimum in terms of the local
gradient norm, i.e., the gradient bound valid in the local
phase. Without such a refinement, one would need to impose a
uniform bound on the gradient norm across all phases, which
would in turn yield a larger steady-state noise margin.
We now state the proof formally.

Proof. Let V be as before. Then, by Lemma 1, E[τM ] ≤ Tburn
where τM is as in (3). The arguments to follow are to be
thought of as being along a sample path of V (t). In this sense,
even if we do not state this explicitly, the statements are meant
to hold almost surely. Since τM <∞, hence for t > τM , we
have that, f(θ(t))− f(θ∗) ≤ 2M . Since f ∈ C2, we obtain

∥∇f(θ(t))∥ ≤ G2M ,

for some G2M > 0. Once the process has entered the sub-
level set ΩM , consider the stopping time ρ := inf{t ≥
τM : V (t) > 2M}. Define the stopped process θ̃(t) :=
θ(t ∧ ρ). By Lemma 2 applied with horizon H = T and the
delayed-history condition at time τM , with high-probability
the segment {θ̃(s − τ(s))}s∈[τM ,t] stays in Ω2M on every
window of length T . Hence all local bounds below hold along
[τM , t ∧ ρ]. Finally, since the exit probability has a time-
uniform tail (see the supermartingale bound in Lemma 1), we
let ρ→∞ to obtain the claimed estimate for E[V (t)].
Now we derive an ODE-type inequality on V (t) in ΩM . Using
Itô’s Lemma [30] we have that,

dV (t) = −η∇f(θ(t))⊤∇f(θ(t− τ(t)))dt

+ ησ∇f(θ(t))⊤dW (t) +
1

2
η2σ2 tr[∇2f(θ(t))]dt (50)

Taking expectations and using tr[∇2f(θ(t))] ≤ kL
where θ(t) ∈ Rk we get,
d

dt
E[V (t)] ≤ −ηE

[
∇f(θ(t))⊤∇f(θ(t− τ(t)))

]
+

1

2
η2σ2kL,

(51)
where we have also used the fact that the Brownian term is
a martingale and has zero mean. Now we lower-bound the
inner-product ∇f(θ(t))⊤∇f(θ(t− τ(t))). Using the identity,

a · b = 1

2

(
∥a∥2 + ∥b∥2

)
− 1

2
∥a− b∥2,

where a, b ∈ Rk and applying expectations on (50) we have,

E[∇f(θ(t))⊤∇f(θ(t− τ(t)))] =
1

2
E
[
∥∇f(θ(t))∥2

]
+

1

2
E
[
∥∇f(θ(t− τ(t)))∥2

]
− 1

2
E
[
∥∇f(θ(t))−∇f(θ(t− τ(t)))∥2

]
.

Using (5) to lower-bound the first two terms and Lipschitz
continuity to upper bound the third term, we get

E[∇f(θ(t))⊤∇f(θ(t−τ(t)))] ≥ µE [V (t)]+µE [V (t− τ(t))]

− 1

2
L2E

[
∥θ(t)− θ(t− τ(t))∥2

]
. (52)

Substituting the bound in (52) to (51) and dropping
−ηµE[V (t− τ(t))] we conclude that,

d

dt
E[V (t)] ≤ −ηµE[V (t)]+

ηL2

2
E
[
∥θ(t)− θ(t− τ(t))∥2

]
+

η2σ2kL

2
. (53)

We further bound ∥θ(t)− θ(t− τ(t))∥2 as follows:

θ(t)− θ(t− τ(t)) =

∫ t

t−τ(t)

−η∇f(u− τ(u))du

+

∫ t

t−τ(t)

ησdW (u).

Using ∥a+ b∥2 ≤ 2∥a∥2 + 2∥b∥2,

∥θ(t)− θ(t− τ(t))∥2 ≤ 2

∥∥∥∥∥
∫ t

t−τ(t)

−η∇f(u− τ(u))du

∥∥∥∥∥
2

+ 2

∥∥∥∥∥
∫ t

t−τ(t)

ησdW (u)

∥∥∥∥∥
2

, (54)

we bound each of the two terms above. First we bound the
drift term.∥∥∥∥∥
∫ t

t−τ(t)

−η∇f(u− τ(u))du

∥∥∥∥∥ ≤
∫ t

t−τ(t)

η∥∇f(u− τ(u))∥du

≤ ηG2MT. (55)

For the noise term, we note that,∥∥∥∥∥
∫ t

t−τ(t)

ησdW (u)

∥∥∥∥∥
2

≤ η2σ2τ(t) ≤ η2σ2T. (56)

Combining the drift and noise parts ((55), (56)) and substitut-
ing in (54), we obtain:

∥θ(t)− θ(t− τ(t))∥2 ≤ 2η2T 2 (G2M )
2
+ 2η2σ2T =: ∆local.

(57)
If θ(·) ∈ Ω2M around time t, then

∥θ(t)− θ(t− τ(t))∥ ≤ ∆local.

Thus following from the inequality in (53), we get

d

dt
E[V (t)] ≤ −ηµE[V (t)] +

ηL2

2
∆local +

η2σ2kL

2
.

Denoting by,

βlocal =
ηL2

2
∆local +

η2σ2kL

2
, and ξ = ηµ,

we have that,
d

ds
E[V (s)] ≤ −ξE[V (s)] + βlocal
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for s ≥ τM . Integrating from s = τM to s = t gives:

E[V (t)] ≤
(
E[V (τM )]− βlocal

ξ

)
e−ξ(t−τM ) +

βlocal

ξ
.

Finally defining

κ :=
βlocal

ξ
=

η2

µ

(
L2T 2 (G2M )

2
+ L2σ2T

)
+

ησ2kL

2µ
,

yields the result.

APPENDIX IV
PROOF OUTLINE OF THEOREM 2

Proof. By Corollary 1, we have that E[τM ] < ∞, where
τM is as in (3). As a result, θ(t) enters the sublevel set
ΩM := {θ : V (t) < M}. Next we partition [t0, tf ], into
blocks [tj , tj+1] with t0 = τM and tj+1 − tj ≥ T as
in Assumption 6. On each block, we apply Lemma 2 with
horizon tj+1 − tj . This yields that with probability at least
1 − δj , that {θ(s − τ(s))}s∈[tj ,tj+1] ⊂ Ω2M ; hence the
local smoothness/gradient bounds hold on the entire block.
Choosing a failure budget with

∑
j δj ≤ δ, we obtain the

same but block-wise differential inequality as in Theorem 1:

dV (t) = −η(t)∇f(θ(t))⊤∇f(θ(t− τ(t)))dt

+ η(t)σ∇f(θ(t))⊤dW (t)

+
1

2
η(t)2σ2 tr[∇2f(θ(t))]dt

for t ≥ τM . Take the expectation to obtain

E[dV (t)] = η(t)E[∇f(θ(t))⊤∇f(θ(t− τ(t)))]dt

+
1

2
η(t)2σ2E

[
tr
[
∇2f(θ(t))

]]
dt.

From here onward, we follow exactly along the lines of the
proof of Theorem 1, as we decompose the inner product into
sums of norms using

a⊤b =
1

2

(
∥a∥2 + ∥b∥2

)
− 1

2
∥a− b∥2,

and use (5) to lower-bound the first two terms and L- smooth-
ness to upper bound the norm difference squared, to obtain

∥θ(t)− θ(t− τ(t))∥2 ≤ 2η(t)2T 2 (G2M )
2
+ 2η(t)2σ2T

=: ∆local(t). (58)

Proceeding further in a similar fashion as in the proof of
Theorem 1, we arrive at the differential inequality:

d

dt
E[V (t)] ≤ −µη(t)E[V (t)] +

1

2
L2∆local(t)η(t)

+
σ2

2

∣∣∣∣ max
1≤s≤tf

tr(∇2f(θ(s)))

∣∣∣∣ · η2(t). (59)

A sufficient condition for negative drift would be to ensure
the RHS of (59) to be negative.

Substituting for ∆local(t) in (59) we obtain a cubic inequality
The roots of this cubic are:

η1(t) = 0, (60a)

η2(t) =
−σ2Hmax +

√
σ4H2

max + 16µE[V (t)]a

2a
, (60b)

η3(t) =
−σ2Hmax −

√
σ4H2

max + 16µE[V (t)]a

2a
, (60c)

where,

Hmax =

∣∣∣∣ max
1≤s≤tf

tr(∇2f(θ(s)))

∣∣∣∣
and,

a = L2T 2(G2M )2 + L2σ2T.

Since η(t) > 0, thus for the RHS of (59) to be negative, we
must have:

0 < η(t) < η2(t),

for all t ≥ τM (refer to Remark IV.1 for an interpretation).
Now continuing with the analysis, if t ∈ [tj , tj+1], then

using from (58), we have,

∥θ(t)− θ(t− τ(t))∥2 ≤ 2η2max,jT
2 (G2M )

2

+ 2η2max,jσ
2T =: ∆

(j)
local,

and we have,

d

dt
E[V (t)] ≤ −µη(t)E[V (t)]+

1

2
L2∆

(j)
localη(t) +

σ2

2

∣∣∣∣ max
1≤s≤tf

tr(∇2f(θ(s)))

∣∣∣∣ · η(t)2︸ ︷︷ ︸
=:β(t)

.

This is a linear differential inequality. With an integrating
factor of eµ

∫ t
t0

η(s)ds we can solve it as:

E[V (t)] ≤ E[V (t0)]e
−µ

∫ t
t0

η(s)ds

+ e
−µ

∫ t
t0

η(s)ds
∫ t

t0

e
µ
∫ u
t0

η(s)ds
β(u)du.

We upper bound the second term in the RHS above. We have,

e
−µ

∫ t
t0

η(s)ds
∫ t

t0

e
µ
∫ u
t0

η(s)ds
β(u)du =

K−1∑
j=0

R(j)

where

R(j) = e
−µ

∫ tj+1
tj

η(s)ds
∫ tj+1

tj

e
µ
∫ u
t0

η(s)ds
β(u)du.

with tK = tf . Since each summand of the above sum is
positive, we can upper bound the sum by upper bounding each
summand, which we do as follows.

On each interval [tj , tj+1], since tj+1 − tj > T , we have
β(u) ≤ βmax,j where,

βmax,j :=
1

2
L2∆

(j)
localηmax, j +

σ2

2

∣∣∣∣ max
1≤s≤tf

tr(∇2f(θ(s)))

∣∣∣∣ · η2max,j .

We draw the following observations:

e
−µ

∫ tj+1
tj

η(s) ds ≤ e−µηmin,j(tj+1−tj),
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and that∫ tj+1

tj

e
µ
∫ u
t0

η(s) ds
β(u) du

≤ βmax,je
−µηmax, j t0 ·

∫ tj+1

tj

eµηmax, ju du

=
βmax,j

µηmax, j
e−µηmax, j t0 ·

(
eµηmax, jtj+1 − eµηmax, jtj

)
.

Using both inequalities above, we have that

R(j) ≤ βmax,j

µηmax, j
e−µηmax, j t0

(
e
µ

[
ηmax, j−ηmin,j

]
tj+1

eµηmin,jtj−

e
µ

[
ηmax, j+ηmin,j

]
tj
e−µηmin,jtj+1

)
.

(61)

We claim that the upper bound in (61) is positive. Note that

e
µ

[
ηmax, j−ηmin,j

]
tj+1

eµηmin,jtj > e
µ

[
ηmax, j+ηmin,j

]
tj
e−µηmin,jtj+1 ,

whenever tj+1 > tj which is trivially true.
As a result, we have,

K−1∑
j=0

R(j)

≤
K−1∑
j=0

βmax,j

µηmax, j
e−µηmax, j t0

(
e
µ

[
ηmax, j−ηmin,j

]
tj+1

eµηmin,jtj

− e
µ

[
ηmax, j+ηmin,j

]
tj
e−µηmin,jtj+1

)
.

Finally substituting βmax,j , yields the result.

Remark IV.1. (Learning rate): It can be verified that in the
absence of delay (T = 0), we have a quadratic inequality
instead of a cubic inequality. The condition for a strictly
negative drift is then:

0 < η(t) <
2µE[V (t)]

σ2Hmax
.

This comes both from taking the limit T → 0 in (60b) as well
as solving explicitly for η(t) with the modified equation:

d

dt
E[V (t)] ≤ −µη(t)E[V (t)] +

σ2

2
Hmaxη(t)

2.

•

APPENDIX V
SUPPLEMENTARY PROOFS

Recall from Experiments and Results that the synthetic
function we chose for our experiments was:

f(θ) = θ⊤Qθ + ϵ sin(w⊤θ). (62)

In what follows, we derive the strong-convexity constant µ
and the L-smoothness constant L for this function.

V-A Derivation of strong-convexity constant
Define,

RQ(v) :=
v⊤Qv

∥v∥2
,

to be the Rayleigh-quotient for a vector v for a symmetric
positive-definite matrix Q.
The gradient and Hessian of f are given respectively as:

∇f(θ) = 2Qθ + ϵ cos(w⊤θ)w, (63a)

∇2f(θ) = 2Q− ϵ sin(w⊤θ)ww⊤. (63b)

Pick any unit vector v. Using,

v⊤(ww⊤)v = (v⊤w)2,

we have from (63b),

v⊤
(
∇2f(θ)

)
v = 2RQ(v)− ϵ sin(w⊤θ)(v⊤w)2.

Now using,
RQ(v) ≥ λmin(Q),

and,
sin(·) ∈ [−1,+1],

we can lower-bound v⊤(∇2f(θ))v as,

v⊤
(
∇2f(θ)

)
v ≥ 2λmin(Q)− ϵ(v⊤w)2

≥ 2λmin(Q)− ϵ∥w∥2,

where the last inequality follows from Cauchy-Schwarz.
Therefore provided,

ϵ <
2λmin(Q)

∥w∥2
,

the Hessian is uniformly positive-definite and

µ = 2λmin(Q)− ϵ∥w∥2.

V-B Derivation of L-smoothness constant
Now we upper bound v⊤(∇2f(θ))v, which in a similar

fashion like the lower-bound happens to be

v⊤(∇2f(θ))v ≤ 2λmax(Q) + ϵ∥w∥2.

Thus the operator-norm of the Hessian satisfies∥∥∇2f(θ)
∥∥
2
≤ L = 2λmax(Q) + ϵ∥w∥2,

for all θ. Thus f is L-smooth.
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